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AbsLraeL All important theories of impurity resistivity in three dimensions each give 
one of two results. AU results are obtained without any implicit inclusion of electmn- 
elecmn scattering. l l e  electron-electnm scattering has an indirect effect on the impurity 
resistivity in that it aEezts the distribution function For the camem Result number one 
ir found m the Limit of DO electmn-elecmn scattering while the second result is found 
from theories where the basic assumption is that the electrons are thermalized m their 
centreilF-mas system, id. very strong electmn-electron scatteling. lius the mu rwultr 
can te viewed as the upper and lwer limits of the rault  of a more elaborate theory 
including deNon-elestmn scattering. lo the pnesent work we study the mmpond ing  
upper and Iowr limits for impurity scattering in a lsodimensional system. Numerical 
results for general temperatures are presented For &doped GaAr Analytical expressions 
are p*en for the low- and high-temperature limits of the resistivity. 

1. Intmduction 

The present work b an extension to two dimensions (20) of our earlier discussion [1,2] 
of the basic theory of impurity resistivity in three dimensions (3D). "hii discussion was 
inspired by the recent renewed interest in impurity resistivity sparked by the discovery 
[>5] that the force-balance I6421 type of theories have the same basic problems as 
the resistivity formulations [13-17] were found [U] to have nvo decades ago. 

We will not go into any great details here but only summarize the important facts 
for the 3D case. All important theories of impurity resistivity give one of two results. 
The results are different for fmite temperatures but merge for lower temperatures. 
The first is 

U = ( n e z / m * ) ( T ( k ) )  (1) 

and the second is 

P = (m*/ne2)(1 /T(I . ) )  

where in 3D the angle brackets stand for the following averaging procedure 

The Kubo (K) formula for the current-current correlation function obtained 
with diagrammatic perturbation theory (to infinite order) and the solution of the 
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Bolmann  equation (BE), both give result number one while result number hvo 
is obtained from the resistivity formulations (to lowest order), the force-balance 
methods (FB), the energy-loss method (EL) [19], the generalized Drude approach 
(GDA) [20] and the lowest-order wriational solution of the Bolrzmann equation (BEV) 
[Zl]. Result number two is also obtained from the Kubo formula for the forceforce 
correlation function. 

All results are obtained without any explicit inclusion of electron-electron (e-e) 
scattering. This scattering mechanism does not contribute directly to the resistivity 
in the case of an isotropic one-component carrier system. However, it contributes 
indirectly in that it changes the distribution function for the carriers. This in Nm 
modifies the impurity scattering. The fust result is correct in the absence of ee 
scattering while the second is correct in the limit of very strong e-e scattering (which 
leads to complete thermalization in the centre-of-mass system for the carriers). A 
correct treatment of the conductivity-, resistivity- and force-balance formulations in 
the presence of e-e scattering (or any other inelastic scattering mechanism that strives 
towards a thermalization of the carriers) leads to the same result, somewhere in 
between the above. Thus, the two results can be regarded as the lower and upper 
limits, respectively, of the correct impurity resistivity. 

In the present work we determine the corresponding results €or a 2~ system. The 
numerical results are presented for a system that can be regarded as an idealization 
for an n-type &doped layer in GaAs, the shallow donors are assumed to be distributed 
at random within the doping plane; the finite extension of the electron wavefunction 
perpendicular to the plane is neglected; only one quantized level is occupied and 
effects from interband transitions are neglected; we assume a neutral layer, Le. one 
free electron per donor in the layer. 

We extract the fust result from the standard semi-classical Boltzmann equation 
and then we use the generalized Drude approach (GDA) to obtain the second result. 
The derivations together with the numerical results are presented in section 2 We 
introduce the generalized Thomas-Fermi screening in 20 in section 3 in order to 
simplify the calculations and in section 4 we study explicitly the  high- and low- 
temperature behaviour of the two results. Finally we give a summary and conclusions 
in section 5. 
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2. Impurity resistivity in two dimensions 

The calculations are, as mentioned above, performed for heavily n-doped GaAs under 
the assumption #at the donors are randomly distributed and that the impurity 
potential can be approximated by a pure Coulomb potential. The background 
dielectric constant IC is set to 13.0 and we have used the value 0.06 me for the 
effective mass m'. 

The Boltzmann equation implies that for the steady-state condition the occupation 
number for state k is unchanged with time, Le. 

The first term is the collision term and the second term is referred to as the drip rem. 
If we only have impurity scattering we can rewrite the expression as 

- 0. (5) z l f (k)  - f(k + q)16[q2 + 2kqcos(k ,q) ]  eE a f ( k )  
4rre4m'n h3 IC2 Jd 42€2(9,0) it Bk 
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The relaxation time ~ ( k )  can be defined by 

where p is the Fermi distribution function. Linearizing the expression and keeping 
the bwest-order tem gives 

eE a f o ( k )  ae, - = 0. - -- 
h aek ak  

The relaxation time can thus be identified as 

0 

After integration over the angles this result is reduced to 

The resistivity is now obtained from the Current density j' which, in two 
dimensions, can be written as 

where f ( k )  agaffl is the unknown distribution function. The factor 2 is from the 
summation over the spins. Using equation (6) once more, linearizing and keeping 
the lowest-order terms gives, after some rewriting, 

From i = UE we can now identify result number one with ~ ( k )  given by (9) and 
the angle bracket standing for the following averaging procedure 

This is a similar expression to the averaging procedure (3) in 3D except for a factor 
' 5 .  

In the generalized Drude approach (GDA) I201 one starts with the simple Drude 
expression for the dynamical conductivity 

2 

U(W) = (ne* /m*) [ I / ( I /T  - iw)]. (13) 
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The relaxation time r is generalized to be complex-valued and frequencydependent. 
If the expression is expanded for high frequencies it can be compared with a rigorous 
high-frequency result 1221 based on the Kubo formalism and the relaxation time can 
thus be identified. The expression found for ~ ( w )  is assumed to be valid for all 
frequencies, especially for zero frequency which is the l i t  of interest here. From 
(13) it is now possible to identify the resistivity, which is the inverse conductivity, as 

E S&fersm3m and B E Semelius 

We are here interested in the static result, which can be written as 

where e2(q,w) is the imaginary part of the dielectric function in zD. It can be shown 
[U] that the GDA result can also be expressed as 

Le. we have actually found result number two (2) with I/' given by (9) and with the 
averaging procedure described by (12). 

The dielectric function c ( q , w )  in (9) and (15) cannot, to our knowledge, be 
obtained analytically within the random-phase approximation (WA) in two dimensions 
except at zero temperature. This is different from the 3D case where the imaginary 
part of the dielectric function can be expressed analytically for all temperatures. We 
will return to the two temperature limits in section 4. In two dimensions for finite 
temperatures one has to calculate the dielectric function numerically from 

4 4 , w )  = 1 + auR(q,w) (17) 

where the polarizability a ( q , w )  is given in the retarded form by 

Here n(k) is the Fermi occupation numbers and uq = 2ne2/q is the Fourier 
transform of the Coulomb potential in two dimensions. 

We present the two results in figure 1 for three different electron concentrations; 
IO'", 10'' and 10l2 c r 2 .  Higher concentration gives lower resistivity. The full curves 
show the second result found from the generalized Drude approach for each electron 
concentration and the broken curves show the corresponding first result obtained 
from the semi-classical BOltzmann equation. 

3. The generalized Thomas-Fermi screening 

The Thomas-Fermi dielectric function is an approximation of the static dielectric 
function at zero temperature. We will make a more general derivation which applies 
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Figure L 'Ihe resistivity as a function of T/Tp. ?be N W ~ S  taken from the top are for 
Ihe donor densities n = 1 x respectively. ?he bmken 
and full "es represent lhe h i l l  of no e.e and vely suung e-e xattering, respectively. 

1 x 10" and I x lotz 

to finite temperatures but is still limited to zero frequencies. The Thomas-Fermi 
result is then found as the zero temperature limit of our expressions. 

Assume that we have a potential energy V ( T ,  z )  in the electron gas caused by an 
external charge density, Z e p j ( T ) 6 ( z ) ,  and a screening charge density, - eps ( r )6 ( z ) .  
We let T denote the radius vector in the plane where our carriers are situated and 
i the perpendicular coordinate. We will be interested in the potential in the plane. 
Because of this it is useful to introduce the potential energy 

U ( T )  = V(T,O). (19) 

V'V(T,  z )  = ( 4 x e 2 / K ) [ Z p i ( ~ )  - p , ( ~ ) ] S ( z )  

V ( q , h )  = - ( 4 ~ e ~ / m z d d  - ~ , ( 4 " [ 1 / ( q ~  + 0. 

The Fourier transform of Poisson's equation 

(20) 

yields 

(21) 

The Wurier transform of U(r) can in turn be found from 

with together with (21) implies that 

In the Thomas-Fermi approximation one assumes that the electrons behave locally 
as a non-interacting electron gas; the local band bottom is given by U ( T ) .  The 
electrons are distributed in energy according to the Fermi-Dirac distribution function 
from the band bottom upwards; the possibility of localized states in narrow potentials 
is not taken into account. 
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If +ep, is the positive background charge density then the electron density to 
lint order in the potential energy is given by 

p(r) = PO - (%/a~)U(r).  (24) 

B = p& M = (p/EF) A = B M  = Op (27) 

and the mustant 

y =  (m'eZ/KhzkF)  (28) 

we can rewrite the dielectric function as 

E m ( q )  = 1 + (2?reZ/K)(2m'/2?rh2)(dB/dA) = 1 + (2kFY/4)(1- e-B) (29) 

where we have used the following relation for the temperature dependence of p in 
ZD 

The two temperature limits are 

c ( q )  = 1'+ (m/q) = 1 + (2kFy/q) T -+ 0, Thomas-Fermi ("F) (31) 

E ( q )  = 1 + (qDH/q) = 1 + (2kFBy /q )  T -  w, Debye-Hiickel (DH). (32) 

In our derivation this dielectric function is temperature dependent In the zero- 
temperature limit it becomes the ordinary Thomas-Fermi result and in the high- 
temperature limit it becomes the Debye-Hiickel dielectric function. 

The resistivity calculated with the generalized Thomas-Fermi screening is shown 
in figure 2 (broken curves) together with the two main results (full curves). The 
electron concentration used is 10" Thus the simplified screening gives accurate 
numerical values in both the temperature limits, which also will be shown analytically 
in the next section. Unfortunately it fails to produce a good approximation for the 
full RPA in the intermediate-temperature region. 
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T I  5 
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Q z ~ r e  2 'The resistivity as a fnunction of TfTp for the donor density n = 1 x 10" em-z. 
?he upper and lower solid curves (-) are results &I no e-e and wry suong e-e Yattering, 
respxtively, as defined in the text. 'The broken LUIVS (- - -) are the m m p n d i n g  
resulu when the screening has k e n  treated in the simplified generalized 'ThhomasSermi 
appmdmation 

4. Temperature limits 

For zero temperature it is possible to calculate the dielectric function in 20 within the 
NI RPA and the static result is actually identical with the Thomas-Fermi expression 
e(q,O) = 1 + pr r /q  with qT = 2kFy for q < 2kF. This is the interval of interest 
here. The derivative of the imaginary pan is given by 

where Q = q /2k, and W = Tw/4EF. 
The zero-temperature static resistivity in the GDA is then given by (15) 

QZ 1 

'= 71 d Q m ( I +  Q/y)2 '  (34) 

The integral can be solved to yield 

where 

At zero temperature the averaging procedure (12) used with the Boltmann 
equation solution singles out the value az the Fermi level, ie. 
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which is identical to the GDA resulr The two methods thus have the same zero- 
temperature h i t  for the static resistivity within the full RPA and thk result is identical 
with the resistivity found from the simple Thomas-Fermi screening. 

It is interesting to notice. that in the lowdensity Limit or weak-scattering limit the 
static resistivity has an upper bound, i.e. 

E s(Mersn(lm and B E Sernelius 

n2ii n h 
n-0 L i m p = y l  dQ\r?=eZ- 1-Q 2 e2 - -- w 4.0547 x 104 R. (38) Q2 

1 

This can also be extracted from figure 1 where the resistivity curve for the lowest 
electron concentration does drop signi6cantly in the low-temperature limit. There is 
no corresponding decrease in the low temperature resistivity in 30. 

For high temperatures the imaginary part of the RPA dielectric function takes the 
form 
e2(Q, W )  = ( y m / 4 Q z )  {e -~I (W-Q2) /Qlz  - ,-BI(-W-Qz)/Ql' } (39) 

and the derivative at zero frequency is 

(40) 2 -E$', ( W Q ,  W / a W l w = o  = ( y f i B 3 l 2 / Q  )e 
The real part of the RPA dielectric function can be obtained from the imaginary part 
through the Kramers-Kronig dispersion relations. For high temperatures, the real part 
approaches the DeybeHiickel expression E( Q , 0) = 1 + QDH / Q  with QDH = By. 

In the high temperature limit the averaging procedure in equation (12) becomes 

which implies that the high-temperature resistivity of result number one can be written 
as 

p = (2m*3/nezp2h4)/ dk k3e-Pfk,(k) (42) 

.-'(IC) = (4xe4m*n/Tr3KZk2) [ ( n / 2 )  - f ( 2 k / q ~ ~ ) ]  (43) 

/ 
where 

and where f (z)  is given by (36). Since the Second term vanishes for extremely high 
temperatures it is possible to express the very-high-temperature resistivity as 

p = (n2ezpm*/21Ph). (44) 
The generalized Drude approach gives for high temperatures 

2J;;(m*)ZeZB3/2 m Qze-BQ' 
'= KZli3n 1 ~ Q ( Q +  QDH)2. (45) 

In the extreme high-temperature limit this is reduced to 

pw(n2eZpm*/K2h) [ 1 +  (4/q'?)B3/2ylnB3/Zy]. (46) 

If the last term is neglected we have that the generalized Drude approach gives 
mice as high a resistivity as the Boltzmann method in the high-temperature limit, 
independent of the electron concentration. 
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5. Summary and conclusions 

We have studied how the results from the generalized Drude approach for impurity 
resistivity compare numerically with the straightfonvard solution of the Boltrmann 
equation in a 2D system. Numerical results have been presented for an n-type 6-  
doped layer in GaAs. 

The e-e scattering has an indirect effect on the resistivity in that it changes the 
distribution function. In the limit of very strong e-e scattering the electrons are 
thermalized in their centre-of-mas system and distributed according to the Fermi- 
Dirac distribution function. In the other extreme limit, Le. in the limit of no e-e 
scattering at all, the distribution function is different The result from the generalized 
Drude approach, and from other formulations where the basic assumption is that 
the electrons are thermalized in their centre-of-mass system, can be viewed as the 
upper limit of the result of a more elaborate calculation including e-e scattering. 
The Bolmann method gives the other limit Thus the two theories give the upper 
and lower limits of the mrrect impurity resistivity when the iadirect effeco of e-e 
scattering is included. We have here determined the two limits for a ZD system. 

The two results in ZD have a behaviour similar to the corresponding results in 
3D-they merge for zero temperature but differ for finite temperatures. Unique 
to 20 is the fact that the zero-temperature resistivity has an upper bound. This 
gives a characteristic drop in the resistivity towards zero temperature for low donor 
concentrations. We have found analytical expressions for the zero-temperature static 
impurity resistivity and for the high-temperature limits. In the very-high-temperature 
limit the generalized Drude approach gives twice as high a resistivity as the Bolmann 
method. 

We have also found that the generalized Thomas-Fermi screening in 2D does not 
approximate the full WA screening accurately in the intennediate-temperature region 
but the full RPA dielectric function approaches both the Thomas-Fermi expression 
in the low-temperature limit and the Debye-Hiickel result in the high-temperature 
limit. This is in mntrast to the 3D case where the corresponding ciTF expression gives 
a good approximation in the whole temperature range even if the zero-temperature 
result is slightly different from the full RPA result 
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